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ExecutiveSummary

Microporous materials play a very important role in chemical, petrochemical and environmental
industries. The intracrystalline space in these materials consists of channels and/or cages of molecular
dimensions, and is the site for much of the interesting chemistry. There is considerable effort worldwide in
synthesis of frameworks with new topologies and frameworks. Complexity of the physical and chemical
processes that occur during the hydrothermal synthesis of such materials has minimized progress in
understanding the molecular events that are responsible for formation of specific frameworks. Yet, it is clear
that the goal of tailor-directed synthesis rather than the current trial and error efforts will only become reality
with a better understanding of the crystal growth process. Such is the objective of this research program.

The development of new methods for nucleating and growing microporous crystals has not only
made available new structures and morphologies, but also provided insight into crystal growth. As part of the
NASA-funded program, we reported in 1995 (Nature, volume 374, page 44) a new method for synthesis of
zincophosphate with the sodalite structure. The crystals were made from reactants included within the
microscopic aqueous droplets of reverse micelles dispersed in an organic solvent. Two inorganic
components, zinc and phosphate ions are introduced in separate micelles and crystallization is dependent on
the collision and exchange kinetics of the surfactant structures. Further studies have indicated that the rates
of crystal growth can also be varied over a wide range by manipulating the intramicellar concentrations.
Three growth processes, art resulting in sodatite formation have been discovered. These inctude a tayer-by-
layer growth by deposition of micellar contents on specific crystal faces, rapid agglomeration of nuclei of -75
nm to form crystals and formation of crystal via reconstruction of an amorphous intermediate phase. 31pNMR
studies show that the intramicellar acidity is different in these three pathways. We have proposed that the
different acidities result in different phosphate species and thereby supersaturation conditions for
zincophosphate formation. For the case of lowest supersaturation, few nuclei are formed in the micelles and
crystal growth needs to occur by acceptance of solution species in other micelles. This is a slow process,
resulting in single crystals of well defined morphology. In the case of highest supersaturation, growth is rapid
and since time for nucleation is limited, it results in amorphous particles. The third pathway, in which nuclei
are found to aggregate represents an intermediate case.

The observation of distinct crystal growth pathways via the reverse micellar procedure provides an
excellent opportunity to study these in detail. Presently, the growth processes are all interrupted by
sedimentation when particles reach size of half a micron. In microgravity, the growth process is expected to
continue. It has been reported that particles in a fluid which will sediment due to gravitational forces can be
kept suspended by rotation of the reaction chamber. We have constructed a rotating cell and examined all
three pathways with it. Indeed, crystal growth could be accomplished without sedimentation. However,
further information on crystal growth could not be obtained in all cases. It appears that rotation has two
effects. First, it promotes crystal aggregation, presumably from increased collisions of particles with each
other. Second, the rapid motion of nutrients around the crystals alters the crystal face development. Thus, it
is expected that the absence of buoyancy driven convection in microgravity should allow us to examine the
development of different crystal faces.
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Abstract

Formation of zincophosphates from zinc and phosphate containing reverse

micelles (water droplets in hexane) has been examined. The frameworks formed

resemble that made by conventional hydrothermal synthesis. Dynamics of crystal

growth are however quite different, and form the main focus of this study. In

particular, the formation of zincophosphate with the sodalite framework was examined

in detail. The intramicellar pH was found to have a strong influence on crystal growth.

Crystals with a cubic morphology were formed directly from the micelles, without an

apparent intermediate amorphous phase over a period of four days by a layer-by-

layer growth at the intramicellar pH of 7.6. At a pH of 6.8, an amorphous precipitate

rapidly sediments in hours. Sodalite was eventually formed from this settled phase

via surface diffusion and reconstruction within four days. With a rotating cell, it was

possible to minimize sedimentation and crystals were found to grow epitaxially from

the spherical, amorphous particles. Intermediate pH's of 7.2 led to formation of

aggregated sodalite crystals prior to settling, again without any indication of an

intermediate amorphous phase. These diverse pathways were possible due to

changes in intramicellar supersaturation conditions by minor changes in pH. In

contrast, conventional syntheses in this pH range all proceeded by similar

crystallization pathways through an amorphous gel. This study establishes that

synthesis of microporous frameworks is not only possible in reverse micellar systems,

but they also allow examination of possible crystallization pathways.





Introduction

Microporous materials include a large group of solids of varying chemical

composition as well as porosity. The framework structure is made up of

interconnecting T-O-T' bonds, where T and T' can be Si, AI, P, Ga, Fe, Co, Zn, B and

a host of other elements. 1 Materials with Si-O-AI bonding in the framework are called

zeolites and find extensive use. 2 Their microporous nature is exploited in a variety of

adsorption and separation phenomena, s Ion-exchange properties of these materials

are exploited in the consumer and environmental industries. 4 Chemical and

petroleum industries use these materials as catalysts in hydrocarbon transformations. 5

Synthesis of new frameworks has led to new technologies, and considerable effort is

being expended in their discovery. 3

Microporous materials are typically synthesized by a hydrothermal process.

Study of the nucleation, crystal growth as well as development of new synthesis

conditions is an active area of research, e Crystal growth of these materials is a

complicated chemical process.:' For example, in zeolite formation, the silicon and

aluminum containing reactants dissolve in the presence of base to produce soluble

species. Speciation is strongly influenced by the pH, temperature, cations and

structure directing agents. Insoluble aluminosilicates are rapidly formed by reaction of

the solubilized species. Thus, this system is typically in a state of supersaturation for

many of the aluminosilicate species. After an induction period that can extend from

hours to weeks, crystals are observed in the system. Nuclei formation can occur by
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solid state restructuring of the gel or precipitation from the supersaturated solution.

The nuclei can grow using nutrients from the solution or the gel to form the crystals.

The resulting crystal morphologies are controlled by preferential growth of crystal

faces.

Our group has been interested in understanding the mechanism of zeolite

crystal growth and have exploited Raman spectroscopy to investigate solution

species, structure of the gel and template molecules during zeolite synthesis, s

Considerable work has also been done using NMR spectroscopy to monitor solution

species and dedve information about the nucleation process, g Other techniques that

have provided information on the early stages of zeolite nucleation include neutron

scattering. 1° Though considerable research has been done on analysis of the

structural aspects of species responsible for zeolite nucleation, much less is known

about crystal growth. This issue is cdtica/for several reasons. The competitive growth

of nuclei into crystals determines the final crystalline product. Even though nuclei of a

certain zeolitic framework may be formed readily, the rate of crystal growth may be

limiting. Growth of large crystals and seeding phenomena are also dependent on the

type of crystal growth. Finally, the morphology will depend on the crystal growth

process.

Crystallization, in general, has been extensively studied over many decades. _1'13

Supersaturation of nucleating species has shown to profoundly affect the

crystallization process. Walton has summarized the effects of initial supersaturation on

crystal morphology. _2 It was noted that the morphology will vary from compact well

6



defined crystals to poorly developed crystals and finally amorphous aggregates as

the initial supersaturation changes. 12 Examples are ZnC204"2H20 whose crystals have

different habits in different supersaturation ranges. 14 In the case of CaHPO 4, with

increasing supersaturation, rhombohedral, intergrown and twinned crystals of

CaHPO4,.2H20 and ultimately, spherical agglomerates of CaHP04 are formed. 15

To the best of our knowledge, the influence of supersaturation on growth of

microporous frameworks has not been systematically examined. We report here the

discovery that by using reverse micelles as reactants for the growth of

zincophosphate sodalite framework, control can be exercised over the supersaturation

levels, and distinct crystal growth pathways are observed.

Certain surfactant molecules, dissolved in organic solvents, are capable of

solubilizing water in the polar core and these entities are called reverse micelles or

microemulsions. Reverse micelles have the ability to solubilize macromolecules and

enzymes and enzymatic chemistry in these systems is dependent on the water

content of the micelles, le Polymerization chemistry is also possible in reverse micelles,

including control of gel formation and/or flocculation. 17There has also been

considerable work on controlled synthesis of inorganic particles using reverse

micelles, including those of semiconductors, metals, oxides and carbonates. 18The

dynamic behavior of reverse micelles, i.e. the fact that the species in different micelles

can interact with each other via collisions is important in the particle nucleation and

growth process. A connection between the micellar environment and the final

morphology of the material, including the state of aggregation has been found to

?



exist. 17

These studies motivated us to explore if reverse micelles can be used to form

microporous materials. Our attempts to grow aluminosilicate zeolites at >60°C were

unsuccessful because of instability of reverse micelles at high temperatures. 19`

Intermicellar attractive forces increase upon raising the temperature, resulting in

phase separation. 2° Thus, in order to study the crystal growth characteristics of

microporous materials in reverse micelles, we had to limit ourselves to frameworks

that can be made under ambient conditions. Stucky and coworkers have recently

shown that zincophosphate microporous materials, with frameworks similar to that of

the aluminosilicate zeolites can be synthesized under ambient conditions. =1 We have

shown in an earlier communication that zinc and phosphate ions introduced via

reverse micelles will interact with each other and lead to the nucleation and

subsequent growth of zincophosphate sodalite crystals. _=bIn this study, we explore

this system in more detail. The particle size development, their crystallinity and

morphology during crystal growth process has been studied. We demonstrate here

that by controlling the internal pH of these assemblies, and thereby supersaturation,

important information about the crystal growth process is obtained.

Experimental Section

Materials: The surfactant sodium bis (2-ethyl hexyl) sulfosuccinate (AOT) (Aldrich,
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> 98%), n-hexane (Fisher, 99.9%), zinc nitrate hexahydrate (Aldrich, 98%), H3PO 4 (AR

Grade, Mallinckrodt, 85%), tetramethylammonium hydroxide (TMAOH) (25% aq.

solution), and sodium hydroxide pellets (NaOH) (Baker Analyzed) were used. AOT

22
was further purified before use.

Preparation of Micellar solutions: The micellar solutions were prepared by the

phase transfer method, which involves equilibrating a solution of surfactant in a

hydrocarbon solvent with an aqueous solution containing the electrolytes of interest,

followed by separation of phases. Three solutions were prepared: 0.065 M AOT in n-

hexane, 0.2 M Zn(NO3) = aqueous solution, and 0.5 M H3PO 4, 0.24 M NaOH and 0.93

M of TMAOH as another aqueous solution. The zinc and phosphate micelle solutions

were prepared by mixing 8 ml of the aqueous solutions with 200 ml of the n-hexane

solution in two separate containers. After shaking the mixtures for a minute, the

solutions were equilibrated for 48 hours, centrifuged and the remaining aqueous

phases were removed from the hexane. The micellar solutions were allowed to age

for up to three weeks.

Preparation of zincophosphates: The zinc and phosphate containing micellar

solutions, aged for different times were mixed in various volume proportions as

outlined in the text. The reactions were carried out at 25°C.

Characterization of micelle solutions and solid zincophosphates:



Elemental analysis was done by inductively coupled plasma spectroscopy and

combustion methods. Micelle size and particle growth were monitored by quasi

elastic light scattering. These experiments were carried out using a digital correlator

from Brookhaven Instruments (BI-200 SM) with an Excel 3000 argon-ion laser

operating at 514.5 nm. All experiments were performed at 25°C with a laser power of

200 mW at a scattering angle of 90 °. Prior to light scattering experiments, dust

particles were filtered out from the micellar solutions using 0.2 pm Nylon 66

membrane filters. Using software supplied by the vendor, particle sizes were

obtained by using the method of cumulants and exponential sampling analysis. 31p

NMR spectra of the phosphate micelle solutions were recorded at 121 MHz with a

Bruker MSL-300 NMR spectrometer at room temperature. External phosphoric acid

(O.5M) was used as the reference. X-ray powder patterns were determined with a X-

ray diffractometer (Rigaku, D-Max-2B) using nickel-filtered Cu Ke (Z=1.5405 A)

radiation. Particle size and morphology were determined by scanning electron

microscopy (SEM) (Hitachi S-4000). Morphology and selected area diffraction at

eady stages of particle growth were obtained using transmission electron microscopy

using either a Hitachi (H-9000 NAR) with 1.8A resolution at a voltage of 300 kV or

Philips (CM-200) with 2.7A resolution and an accelerating voltage of 200 kV. Only

with the latter instrument could we obtain selected area diffraction, because of

minimized beam damage. Non contact AFM measurements were made on a

Nanoscope III Scanning Probe Microscope (Digital Instruments) or an Autoprobe LS

(Park Instruments).
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Results

Conventional Synthesis:

Stucky and coworkers have reported detailed studies of the crystallization of

zincophosphates from zinc and phosphate containing solutions. =1 Since our goal in

this study was to examine the crystallization of zincophosphate sodalite, we repeated

their procedure for this framework over the pH range of 6.6 to 7.6. In all cases, the

observations were similar. There was the immediate formation of a white precipitate

and the gel settled out of the reaction mixture within 2 hours. The product was

removed after four hours and in all cases was sodalite, with the characteristic

diffraction pattern and morphology shown in Figure 1.

Preparation and properties of Reverse Micelles :

(a) Zinc containinq micelle: The aqueous solutions in equilibrium with the n-hexane

phase were analyzed for Zn, Na, N, and from these results, the uptake of reactants

into the micelle was calculated. Water content of hexane was determined by Karl-

Fisher titration. These data are summarized in Table 1. Light scattering experiments

show that the diameter of the zinc containing micelle is 8.5 nm. The variation in size

over a three week period is plotted in Figure 2. There was minimal change in size

over this time period. Considering the [H=O]/[AOT] (w) ratio of 13, the zinc micelles

are considerably larger than micelles containing comparable levels of only water);'
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For transition metals, e.g. Cu2+ in reverse micelles, above a w of 10, the ions were

found to be totally hydrated and bulk water is present.17°A similar situation can be

expected in these zinc micelles.

(b) Phosphate containing micelle: From the elemental analysis (Na, P, N, C) of the

aqueous phosphate solution after equilibration, the micellar composition was

estimated and is shown in Table 1. Tetramethylammonium ions were necessary for

the uptake of phosphate ions into the micelle. There is a change in size of the

phosphate micelle from 15 to 19 nm over a three week period (Figure 2).

Measurement of pH with a glass electrode showed that the initial solution had a pH of

11.4 and gradually decreased in time to a pH of 9.6 after 21 days. Even though pH

values measured in a hydrocarbon environment may not be directly comparable with

aqueous solutions, le the trend is that the solution is becoming less basic with time.

Another method discussed in the literature for estimating intramicellar pH is 31p

NMR._ sip NMR spectra of the phosphate micellar solutions as a function of aging

time is shown in Figure 3. Chemical shift values are quoted relative to a phosphoric

acid standard of 0 ppm. A series of phosphate buffers were used to correlate the

chemical shift with the pH. The assumption being made here is that the pK,'s of

phosphoric acid remain unchanged in the micelle. _ With this calibration, the

intramicellar pH was found to decrease from 12.3 to 11.8 over 21 days, the same

trend as measured with the glass electrode.

Zincophosphates formed by reaction of zinc and phosphate micelles:
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There are three sets of experiments that we report here using the zinc and

phosphate micelles. First, we report on the nature of solids formed by mixing equal

volumes of zinc and phosphate micelle, both solutions being aged for periods of time

varying from 0 to 13 days. Second, we report an experiment in which the volume of

zinc micelle was three times that of the phosphate micelle (both samples aged for 8

days). The results from these experiments are summarized in Table 2. Third, we focus

on reactions between zinc and phosphate micelles aged for 8 days and mixed with

volume ratios of 0.8 to 1.2.

For the experiments reported in Table 2, the solutions were clear upon mixing

the micelles. Then at various times as indicated in the table, it was noted that a white

product began settling out. After completion of the settling process, the product was

removed, washed and analyzed by powder X-ray diffraction and the results are

shown in Figure 4. The product recovered with the micelle solutions aged for 2 days

of reaction is a mixture of hexagonal sodium zinc phosphate and sodalite. 21b

Sodalite is formed when the micelles were aged for more than 6 days. The product

formed upon mixing 120 ml of zinc micelle solution with 40 ml phosphate micelle

solution leads to the formation of hoepite (zinc phosphate) =lb, as shown in Figure 4c.

In Figure 5 are shown the Sip NMR spectra of the solutions from which hexagonal

zinc phosphate plus sodalite, sodalite and hoepite were obtained, and indicates that

the acidity of these solutions are increasing.

Formation of Sodalite
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In order to further explore crystal growth, we focused on the composition and

conditions shown in Table 2 that resulted in sodalite formation. Sodalite is a member

of the microporous family of frameworks and has been extensively studied in the

aluminosilicate 24 as wel_ as all silica systems. 25

(a) Micellar Compositions: Solutions of phosphate and zinc micelle aged for 8 days

were used as starting materials for sodalite synthesis. We examined the solids

formed upon mixing these solutions in different volume ratios. Based on these results,

three compositions made by adjusting the relative ratios of the zinc and the

phosphate micelle solutions between 0.8 and 1.2 were examined in more detail, in

Table 3, these are identified as compositions A, B and C. The concentrations of the

number of micelles was calculated based on their size by the formalism presented by

Towey et al. _

_fP NMR of the solutions corresponding to compositions A, B and C are shown

in Figure 6. With increasing content of the zinc micelle, the overall solution becomes

more acidic. From the pH-NMR calibration data, the pH values in compositions A, B

and C are 7.6, 7.2 and 6.8, respectively.

(b) Particle Growth Characteristics: There was a marked difference in the rates of

appearance of particles for the three compositions. In the case of composition A, the

solution did not turn cloudy and particles appeared at the bottom of the reaction

chamber after 2 days and increased with time over 4 days. For composition B, the

reactor became cloudy within the first 12 hours, followed by settling out of particles

over the next 24 hours. For composition C, the solution became cloudy within an
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hour and particles mostly settled out in 4 hours.

Laser light scattering obtained on all three compositions upon mixing the zinc

and phosphate micelles indicated that the initial micelle size is of the order of 15-50

nm. However, the nature of the particle growth varied significantly between the three

compositions. Before we present the data obtained by light scattering, a word of

caution is in order. It is evident from the light scattering literature that analysis of the

autocorrelation function for size distribution in polydisperse systems is complicated. In

order to choose the appropriate method for data analysis, we obtained polystyrene

standards of 16, 65, 445 and 944 nm. With the software involving the method of

cumulants, reasonable values within 10% of the size could be readily obtained.

However, when we took mixtures of two standards, the exponential sampling

technique did a better job. For example, using the exponential method, a mixture of

16 and 65 nm particles were analyzed and indicated a bimodal distribution of 28 and

56 nm. Considering that the micelles are growing in size to form the zincophosphate

particles, polydispersity is expected. So, we used the exponential sampling method to

derive particle size. For most samples we examined, two population distributions

were calculated, and each is represented in Figure 7 with the appropriate range. The

trends observed using the method of cumulants or the mean size (first moment)

obtained by the exponential sampling method were similar.

It is evident from Figure 7 that the time scale on the x-axis is changing from

days to hours to minutes as we go from compositions A through C. The sizes shown

in Figure 7 are used here to indicate trends in particle growth.
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For compositions B and C, there is a period of time in which the particle size

remains below 100 nm, followed by a rapid increase. However, the period of time

before the growth spurt is very different, about 16 hours for Composition B and less

than 2 hours for Composition C, consistent with our visual observations. In the case

of composition A, the growth seems more complicated. There is no growth spurt,

rather a gradual increase, which reaches a maximum around 36 hours, followed by a

decrease and then further growth. As mentioned earlier, we did not notice any

cloudiness during the growth, only settled particles. Combining this information with

the light scattering, we suggest that a small number of particles grow to a certain

size, settle out and are replaced in solution by new particles.

(c) Diffraction patterns of the recovered Particles: For composition A, the solution

remains clear and evidence of reaction is provided by solids appearing at the bottom

of the reaction vessel for the first time after 2 days. Figure 8 shows the diffraction

patterns obtained from this sample. The peaks due to sodalite are evident. This

shows that the settled particles are already crystalline, implying that crystal growth is

occurring while suspended. With time, the crystals increase in amount and are

characteristic of the sodalite framework (Figure 8b). For composition B, as soon as

the solution became cloudy, it was centrifuged. This typically took about 12-16 hours.

The diffraction pattern of this solid is characteristic of the sodalite framework, as

shown in Figure 9a (the amount of sample collected at this stage is very small, which

accounts for the poorer quality of diffraction patterns). The crystals recovered from

the bottom of the chamber after settling for 24 hours also exhibit the sodalite crystal
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patterns (Figure gb). For composition C, examination of the particles formed

immediately after the appearance of turbidity are mostly amorphous by diffraction.

(Figure 10a). The settled amorphous solid was monitored by diffraction and

transforms to sodalite over a 4-day period, as shown by the diffraction patterns in

Figures 10b and 10c.

(d) Microscopy of the Recovered Particles : Electron microscopy was used to

examine the morphology of the solids formed with each composition. Figure 1la

shows the scanning electron micrograph of the crystals obtained after settling (4

days) for composition A. The sizes of these crystals are between 500-600 nm. The

morphologies are cubic crystals, or pyramids (half-cubes). Centrifugation of the

reaction mixture after 18 hours of reaction did afford a small quantity of solid, which

was examined by TEM and shown in Figure 11b. Cleady, the morphology of the

crystals is similar to that observed after 2 days, though the crystals appear to be

smaller (100-500nm), and peaked between 200-220 nm. Selected area diffraction of

the crystal shows that the material is crystalline. Thus, it appears that at all observable

stages of growth, the morphology of the sodalite crystals remain similar, with size and

yield increasing in time.

The surfaces of (100) faces of a cubic sodalite crystal were examined by non-

contact atomic force microscopy (AFM). Figure 12 shows the micrograph of the

surface for two different crystals. There appear to be flat terraces followed by steps,

roughly aligned with the crystal side. The step heights (Figure 12a) were about 10A in

height, corresponding to a sodalite cage. On some crystal surfaces, e.g. the one
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shown in Figure 12b, there was a distribution of step heights, with the smallest steps

being 10 A, but there were steps also as large as 30A.

Figure 13a show SEM pictures of the particles obtained for composition B

before settling. The suspended particles are crystallites of sizes less than 600 nm and

eventually aggregate to form the 2-3/_n settled crystals (not shown). Solids were

recovered after 6 hours of reaction (prior to appearance of any cloudiness) by

centrifugation and examined by TEM and is shown in Figure 13b. There is clearly

evidence of aggregates of small particles. The selected area diffraction show that this

material is crystalline.

The transmission electron micrograph shown in Figure 14a are for particles

collected from the turbid solution prior to settling for Composition C. These are

discrete particles of approximately 5/_n. These particles settle, agglomerate and

form a contiguous solid with time, whose SEM picture is shown in Figure 14b.

Sodalite crystals grow out of this settled solid phase, with the morphology shown in

Figure 14c after 4 days of growth.

It was of interest to determine if in composition C, sodalite crystal growth from

the suspended particles is possible. The problem is that these particles settle out

within a few hours. Thus, it was necessary to develop a strategy for keeping these

particles suspended without altering the chemical composition. It has been reported

in the literature that the particles in a fluid which will sediment due to gravitational

forces (Stokes law) can be kept suspended by rotation of the reaction chamber. =7 We

constructed a system which accommodated the cylindrical Teflon bottles typically
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used in the synthesis. A schematic of this equipment is shown in Figure 15a. The

reactor rotates around its central axis at speeds up to 7 to 45 rpm. The orbits

assumed by the particles are approximate circles around a center displaced

horizontally from the axis of rotation. A minimum rotation speed is required in order

to insure that this center lies within the dimensions of the reactor. At very high

rotation rates, particles with densities higher than the fluid (as in this case) will spiral

out and hit the wall of the reactor. The choice of the rotation speed thus needs to be

optimized depending on the particle-fluid system.

Formation of sodalite crystals by pathway C could be completed in the rotating

cell at 11 rpm with minimal sedimentation on the walls of the reactor over a period of

10 days. From the individual amorphous particles, sodalite crystals were seen to

grow, as shown in Figure 15b.

DISCUSSION

Results above show that it is possible to grow zincophosphate frameworks

from reactants initially contained in reverse micelles. We discuss the role of the

reverse micelle, with particular emphasis on the structure and speciation of the zinc

and phosphate species and their interactions to form the solid phases. Correlation of

the micellar chemistry with the well-known aqueous chemistry also serves to

distinguish the role of the reverse micelle. In particular, the marked difference in

particle growth rates and morphologies of sodalite crystals formed by minor changes
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of composition is interesting. Understanding these observations provides information

on the mechanism of the crystallization process.

Nature of Reverse Micelles:

The procedure of phase transfer to form reverse micelles by equilibrating an

AOT-hydrocarbon with an aqueous salt solution is well studied in the literature. 28 From

Table 1, it is evident that considerable amounts of water are taken up into the zinc

and phosphate micelles. Considering that the water/AOT ratios of the two micelles

(13 and 21) are considerably higher than that necessary for hydration of sulfonate

groups, bulk water must be present in the pools. _ As the water becomes more bulk-

like, the ions present in the micelles also have relatively unrestricted motion. 3°

Water content of phosphate micelles is higher than the zinc micelles. The

amount of water taken up in a micelle is strongly dependent on the salt

concentration, s' In the case of the phosphate micelle, this is a basic solution. Previous

studies on uptake of basic solutions such as ammonium hydroxide into AOT micelles

show that considerable amounts of water are incorporated into the reverse micelle, a

factor of three greater compared to uptake of Fe 3÷ ion. 32 Highly basic solutions have

also been made with aqueous ammonia in the water pools of AOT micelles for

hydrolysis of alkoxides to make silica. Based on the size of the silica particles

created, it was postulated that the high pH caused an increase in diameter of the

water pools. _ Phosphate micelles also contain higher content of solutes, in particular,

TMA cation. Large amounts of TMA can be solubilized in reverse micelles because

of the weak interaction with the head groups of the surfactant. 31
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Also, in the case of phosphate micelle, an upfield shift of the Sip NMR signal

was noted with aging, indicating that the micelle is becoming less basic with time.

This behavior can be understood from the acid-base chemistry that can occur inside

the micelle. Along with the phosphate, Na ÷ and TMA + ions, OH ions are also

transported into the micelle from the aqueous solution. The head-group of the

detergent (AOT) is a succinate ester. It has been reported in the literature that in the

presence of base, the following hydrolysis reaction can take place: _

OH + -CH=COOR -,.-CH=CO0 + ROH

This leads to a decrease of pH in the micelle and the phosphate species

reequilibrate. The reverse micellar structure appears to be maintained. Hydrolysis

upon aging is providing a mechanism to change the intramicellar pH and the

phosphate species.

Studies based on the acid-sensitive optical probe 2,7-dichlorofluorescein and

the hydrolysis of triethyl orthobenzoate ester suggest that the zinc micelle might be

somewhat acidic. _ This is probably not surprising considering the hydrolysis of

aquated zinc ions. _

Comparison of zincophosphates made from reverse micelles and conventional

synthesis:

In the experiments described in Table 1 we start with the same set of reactants.

Aging decreases the pH in the phosphate micelle and the contents of the zinc micelle

are acidic. Mixing these two micelles results in a more acidic solution. From the

21



intramicellar NMR data, it appears that the hexagonal sodium zinc phosphate, sodalite

and hoepite are formed from micellar solutions with increasing acidity. Stucky et al.

have examined the various phases formed with zincophosphates from purely aqueous

medium as a function of pH. They noted that hexagonal sodium zinc phosphate is

formed at high pH range (pH = 10) and sodalite is formed at neutral pH (pH = 7)

and hoepite is formed at acidic pH's. 21 It is clear from these trends that the overall

chemistry regarding the formation of zincophosphate crystalline phases starting with

reactants in micellar phases are similar to that in aqueous solution. This establishes

that the micellar and aqueous chemistry follow similar pathways.

Focusing now on the crystallization of the sodalite zincophosphate, we find that

by varying the zinc to phosphate micellar volume ratios between 0.8 and 1.2, sodalite

growth rates vary over a wide range. 31p NMR studies of compositions A,B and C

show that at the beginning of the reaction, the intramicellar pH's are 7.5, 7.2 and 6.8,

respectively. As shown earlier (Figure 1), under these pH conditions, there was no

discernible difference in the growth of sodalite in the conventional system. We note

here again that in deriving the intramicellar pH's, we have made the assumption that

the pK,'s of phosphoric acid remain unchanged in the micellar environment. With this

caveat in mind, it appears that the crystallization dynamics in the micellar system is

distinct from the conventional system.

For composition A, crystals appear after two days and continually increase with

time. The powder XRD pattern as well as electron microscopy confirms that sodalite

is being formed while suspended, without any detectable intermediate amorphous
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phase. Light scattering studies indicate continuous growth in size. Once particles

reach a certain size, they sediment and stop growing. At the same time, smaller

particles in the reaction mixture grow larger resulting in more product. The

morphology of the crystal suggests that the crystals are growing by deposition along

specific crystal planes proceeding towards a cubic structure.

In the case for composition B, crystals appear within 12-16 hours again without

any apparent intermediate amorphous phase. The crystals recovered from the

bottom of the chamber after settling have similar particle size and morphologies as

the suspended particles, except that they appear agglomerated. The TEM micrograph

at the early stages show agglomerated particles. Light scattering suggests that the

rapid growth of particles only occur after they reach a size of 75 nm.

For composition C, crystals appear after 4 days and are clearly emerging from

a settled amorphous phase. This pathway is marked by the rapidity of the initial

reaction to form amorphous zincophosphates- the reactant mixture turns turbid in 1

hour, and complete settling of the solid is found in 4 hours. The growth pattern as

measured by light scattering for composition C is consistent with these observations.

The reverse micellar environment:

Thus, it is clear that the micellar environment is playing a major role in the

kinetics of the crystal growth process, though the overall framework is the same as in

conventional synthesis. There are several ways that the reverse micelle can influence

particle growth.
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a) Micellar Dynamics: The interaction between the zinc and phosphate species is

controlled by micellar dynamics. Micelles move by Brownian diffusive motion and

collide with rate constants of ~ 10_-10 s liter mol 1 s °13z. During these collisions, brief

fusions of micelles occur lasting for microseconds. It provides enough time for

exchange of water pools and thereby the reactants enclosed in them. 38 Large cations

and anions, such as Ru(bpy)32÷, methylviologen and Fe(CN)e 3 are known to

interchange between water pools. _

The exchange rates of aqueous solubilisates between water droplets in AOT

reverse micelles depends on the number of micelles, water content, and hence the

droplet size. Similarity of the water/AOT ratio and droplet concentrations of

compositions A-C imply that these are not controlling factors in the growth process.

Considering the high water content of the zinc and phosphate micelles and the

similarity of sizes, rapid exchange of electrolytes upon collision is expected, as noted

for other electrolyte systems in reverse micelles. 4° This equilibration should take place

on millisecond time scales. Considering that the particle growth process is at least of

the order of an hour, the reactant composition in the micelles should be in a state of

equilibrium. The water layer in the micelles can be considered to be a

pseudocontinuous phase and the growth kinetics should be dependent on the

intramicellar concentration of the reactant species, s7 In this system, such exchange

leads to a wide distribution of zinc, phosphate and hydroxide species i.e.

xZn,yPO4,zOH in the micelles, resulting in a considerable heterogeneous population

of micellar contents.
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b) Compositional differences: From Table 3, we note that the number of zinc

micelles always exceeds the number of phosphate micelles, but the relative ratio

gradually increases from 3 in composition A to 4.5 in composition C. The other major

difference is the intramicellar pH, as discussed above.

c)Nucleating Species: The driving force for nucleation is dependent on the degree of

supersaturation of the appropriate nucleating species. The nature of the nucleating

species in many crystallization reactions is not obvious. For example, in the

precipitation of Ag2WO 4 , it is not W042-, but rather intermediate species such as

W60=12-, W12041 lo-, HW_O=_5-.4_ The same is true for formation of ferric hydroxide, in

which the important reaction is between FeQ(OH)2o 7+ and Fe3(OH)44+, rather than

between Fe s+ and 3OH. 42 Complicated reactions involving polymeric nucleating

intermediates have been proposed for formation of TiO 2, Cr(OH) s and Mg(OH)=. _3

Also, the role of pH on nucleating species is well recognized in many

crystallization processes. Drastic effects of pH on supersaturation and the consequent

alteration of the growth rate is known for calcium hydrogen phosphates. _ The

hydroxide and phosphate ion concentrations appear in the ion product [Ca2+]l°[p04 s-

]6[0H12 as exponents and slight increase of pH considerably increases the

supersaturation. Thus, a change in pH from 7.4 to 7.8 resulted in considerable

increase of crystal growth rates. Indeed, above a pH of 7.8, it was difficult to prepare

a supersaturated solution without spontaneous precipitation of calcium phosphate. _

For Cr(OH)3, an amorphous precipitate is formed at pH below 10, whereas a

crystalline material is formed at pH above 10. '_
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In accordance with these earlier studies in aqueous systems, we propose that

the intramicellar pH is influencing the concentration of nucleating species responsible

for formation of zincophosphate sodalite. Thus, in all three compositions (A-C),

homogeneous nucleation is beginning in the micelle, and since the supersaturation of

the nucleating species is varying, there is a wide range of nucleation rates. Even

though the structure of the nucleating species is not identified, the necessity of

hydrolysis of the Zn-O-P bond in their formation is recognized. Hydrolysis reactions

have been noted in reverse micelles. Base catalyzed hydrolysis of esters,'_° as well as

the formation of ferric oxyhydroxide species by hydrolysis of ferric ammonium

sulphate has been reported. 45b Hydrolysis of alkoxides in micelles have shown that

the concentration of the reactants and water determine supersaturation levels. _c The

chemistry involved in crystallization of sodalite is probably more complicated than

these examples, but of similar origin.

Mechanisms of Zincophosphate Sodalite Growth:

In composition A, where the supersaturation is the lowest, crystal growth

proceeds slowly, controlled by surface attachment kinetics. We consider the surface

morphology indicated by AFM to be evidence for a layer-by-layer growth, _ and is

consistent with the cubic morphology observed by SEM. It is known that at low

supersaturation, crystals of compact shapes are formed, since the minimum overall

energy of the crystal surface is reached under very slow growth, equilibrium-like

conditions. 47
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The growth process in Pathway B can be analyzed as an aggregation process.

The early morphology of these crystals appears cubic in nature, suggesting that the

initial growth process may be similar to that of composition A. The viable nuclei

formed grow by incorporating other nuclei. The mobility of the nuclei by diffusion and

convection contribute to the aggregation process. Such diffusion controlled micellar

collisions have been proposed for growth of silica and carbonate particles18c'aThe size

that nuclei will have to reach before aggregation begins is of interest. Since Pathway

B results in direct formation of crystals from nuclei, particle size analysis during this

crystal growth process provides this opportunity. The TEM picture in Figure 13b

shows aggregates of particles. The approximate size of these crystallites is difficult to

determine, but light scattering indicates a size of 75 nm before rapid growth ensues.

The differences in crystal growth rates between compositions A and B are

being assigned to the differences in micellar pH, which leads to two effects. First, it

alters the concentration of solution species. Lazic has recently reported a reduction of

the induction period in hydroxyapatite formation from amorphous calcium phosphate

as a function of pH.48Beyond pH 10.2, the decrease in induction period was

correlated with deprotonation of HP042 and the increase in concentration of CaPO,-.

The second effect of pH on crystal growth arises from the surface charge on the

particle. For example, with both CaHPO4.2H20and hydroxyapatite, crystals grow

slower at pH values less than the pH corresponding to the point of zero charge.49This

was interpreted as the charge on the crystal face being important in building of

growth units in the lattice.
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In pathway C, the intra-micellar conditions result in higher supersaturation. This

leads to rapid nucleation, and since the induction time for crystal formation is longer,

amorphous particles are formed. The morphology of the particles formed initially in

composition C supports the high supersaturation hypothesis. If the rate of particle

growth is very high, then the heat of precipitation cannot be transferred efficiently into

solution. This leads to convection and the particle is surrounded by depleted regions.

The particle extends its surface highly anisotropically. This leads to structures shown

in Figures 14a and 15b.

The formation of an amorphous phase in systems with high supersaturation

has been noted in crystallization of CaCO 3, with the amorphous phase transforming

finally to vaterite and then calcite. 5° Similarly, hydroxyapatite and Mg(OH)2 forms an

amorphous phase followed by crystallization. 51 In the case of AI(OH)3, an amorphous

precipitate transforms to pseudoboehmite. 52 The explanation for these observations is

that the nuclei formed from highly supersaturated solutions do not have an exactly

defined structure and the structure that is formed is determined only during the later

stages of the precipitation. Crystals are formed from these amorphous materials by

dissolution into the mother liquor, 11'13and thereby providing nutrients to the more

stable phase by a solution mediated transformation. However, in the present case,

nutrients cannot dissolve in the organic medium. There are two possibilities. Direct

transformation in the solid state, as has been reported for transformation of vaterite to

calcite. In this case, the morphology remained unchanged upon transformation, 5° and

is not consistent with the present observations. The second possibility stems from
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previous studies on precipitation of metal hydroxides, which have shown that

considerable amount of non-structural water that is retained in the precipitate can be

liberated during the aging process.53Thus after settling of the amorphous

zincophosphate, with time, it is surrounded by a thin water layer that can transport

nutrients. Such a mechanism is supported by the rotating cell experiment, in which

the suspended amorphous particles transform directly to sodalite crystals. The gel

particles appear to act as epitaxial sites for growth, as seen in Figure 15. This process

must occur by solid dissolution and surface transport to the growing crystal via the

water layer.

Role of reverse micelle:

The reverse micelle is providing the control on supersaturation by minor

changes in intra-micellar reactant composition. Aqueous solutions at pH's comparable

to that in the reverse micelles show no apparent difference in the crystallization

pathways. The question that arises is why and how the reverse micelles allow this

level of control. We explain these observations as follows. In the micellar system, after

the micelles have equilibrated, there is a wide distribution of zinc, phosphate and

hydroxide ion occupancies in the different micelles. Depending on these intramicellar

concentrations, there will be a fraction of these micelles in which saturation conditions

will be exceeded. This fraction increases as the composition changes from A to C.

However, only in those micelles in which supersaturation conditions exist will particle

formation occur. Once a nucleus is formed, growth is controlled by transport of
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species to the surface and surface integration. This is dependent on the collision of

the growing particle with micelles containing soluble species or other nucleated

particles. For composition A, where there are few nuclei formed in the micelles, the

growth will have to occur by acceptance of solution species present in other micelles.

Since the nuclei can no longer be considered micelles, the intermicellar exchange

where micelles upon collision open up a conduit to exchange solution species is no

longer possible. Thus, growth of these particles by accepting solution species from

other micelles will be slow. For composition C on the other extreme, the particles

grow rapidly by aggregation. Increased aggregation with supersaturation has been

noted for silver clusters in AOT micelles. 5+ Composition B represents an intermediate

situation, where more particles are formed, and there is enough time prior to

aggregation to form sodalite nuclei.

In the conventional aqueous systems, where there exists uniformity of

compositions throughout the system, it is much more difficult to control the

supersaturation levels, as noted here for reverse micellar systems.

Conclusions

This study shows that it is possible to make complicated structures, such as

zincophosphate sodalite from reactants contained in reverse micelles. Overall, the

reaction chemistry followed the conventional aqueous hydrothermal chemistry. The

internal pH's of the micelles could be controlled with aging. The important discovery,

as contrasted to the aqueous system, is that it was possible to control the crystal
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growth kinetics by using reverse micelles. At low supersaturation levels, crystal growth

by a layer growth mechanism resulting in ideal cubic crystals was observed. At high

supersaturation, crystal growth occurred from amorphous agglomerates, much like in

conventional synthesis. At intermediate supersaturation, a nuclei aggregation process

was observed.
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Table 1: Composition of Micellar solutions:

Zn-micelle P-micelle

[Zn =*] = 0.0075 M [Phosphate] = 0.0125 M

[Na +] = 0.0525 M [Na*] = 0.055 M

[NO3- ] = 0.00507 M [TMA*] = .0.346 M

[AO'r] = 0.065 i [AOT] = 0.065 M

[H20]/[AOT ] = 13 [H20]/[AOT ] = 21

Micelle size = 8.5 + 1 nm Micelle size = 15 + 1 nm
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Table 2: Frameworks formed by mixing zinc and phosphate micelles.

Zn:P04

(volume)

1:1

1:1

Equilibration

time (days)

0

2

Initial appearance

of product (days)

7

5

Product formation

completed (days)

9

6

Final product

(XRD)

unknown +

sodalite

hexagonal zinc

phosphate +

sodalite

1:1 6 1 1.5 sodalite

1:1 8 0.5-1 0.75-2 sodalite

1:1 10 0.5-1 0.75-1.5 sodalite

1:1 13 0.5 0.75-1 sodalite

3:1 8 1 2 hoepite
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Figure Captions

Figure 1 Diffraction pattern and scanning electron micrograph of

zincophosphate sodalite obtained via conventional hydrothermal

synthesis. 21

Figure 2 Size of zinc containing micelle (+) and phosphate containing micelle

(A) as a function of time.

Figure 3 31p NMR signal from phosphate micelle as a function of time.

Figure 4 Powder X-ray diffraction of solids recovered from reaction of zinc and

phosphate (1:1 by volume) after aging of micelles for (a) 2 and (b) 8 days.

(c)Diffraction pattern of solid recovered from mixing zinc and phosphate

micelle (3:1 by volume, aged 8 days).

Figure 5 Sip NMR spectra of solutions obtained by mixing zinc and phosphate

micellar solutions (1"1 by volume) after aging for (a) 2 and (b) 8 days (c)

zinc and phosphate micelle (3:1 by volume, aged 8 days)

Figure 6 S_p NMR spectra of compositions (a) A (b) B and (c) C.

Figure 7 Particle size distribution as measured by light scattering from compositions

(a) A (b) B and (c) C. + and _ represent the smaller and larger sizes,

respectively obtained by the exponential sampling method, along with the

widths of the distributions.

Figure 8 Diffraction pattern of solids obtained from composition A after (a) 2 and (b) 4

days.

Figure 9 Diffraction pattern of (a) solid recovered as soon as composition B turned

cloudy (12 hrs) (b) after solid has settled (36 hrs).

Figure 10 Diffraction pattern of (a) solids recovered at the first sign of turbidity (2 hrs)

(b) after 2 days (c) after 4 days.

Figure 11 (a) Scanning electron micrographs of crystals obtained from composition A

after 4 days (b) Transmission electron micrograph of crystals obtained from

composition A after 18 hours.

Figure 12 Atomic force micrographs of two different crystals obtained from

composition A.
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Figure 13 Scanning electron micrographs of crystals obtained from composition B at

(a) first sign of turbidity (12 hours) (b) Transmission electron micrographs of

solid recovered after 8 hours.

Figure 14 Scanning electron micrographs of solids recovered from composition C

after (a) 2 hrs (b) 2 days (c) 4 days.

Figure 15 (a) Schematic diagram of the rotation cell (b) Scanning electron

micrographs of particle during growth (7 days) from suspended particles

using composition C in the rotating cell.
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